Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

On the Essential Self-Adjointness of Anti-Commutative Operators

In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.

متن کامل

Essential self - adjointness

1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...

متن کامل

Self-adjointness of Cauchy Singular Integral Operator

We extend Krupnik’s criterion of self-adjointness of the Cauchy singular integral operator to the case of finitely connected domains. The main aim of the paper is to present a new approach for proof of the criterion. Let G+ be a finitely connected domain bounded by the rectifiable curve C = ∂G+, G− = C \ clos G+ and ∞ ∈ G−. Suppose also that w(z), z ∈ C is a nonnegative weight such that w(z) 6≡...

متن کامل

J -self-adjointness of a Class of Dirac-type Operators

In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2014

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2014.06.010